868 research outputs found

    On a Taylor Weak Statement for Finite Element Computations in Gas Dynamics

    Get PDF
    The Taylor Weak Statement has been developed as a potential unified approach for approximate computation of fluid flows. It is verified to contain a variety of numerical dissipative methods developed for advection problems by specific identification of its expansion parameters. Generalized Fourier modal analysis has been completed in one space dimension for both semi-and fully-discrete approximations, from which the flux limiter method is herein developed and evaluated for finite element computations. Its application to 1- and 2-dimensional scalar models is investigated for continuous and discontinuous initial value problems, and its use for the Euler equation system of gas dynamics in 1- and 2-dimensional cases is demonstrated

    Spin-orbit torques from interfacial spin-orbit coupling for various interfaces

    Full text link
    We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism.Comment: 24 pages, 9 figure

    Prediction of Giant Spin Motive Force due to Rashba Spin-Orbit Coupling

    Full text link
    Magnetization dynamics in a ferromagnet can induce a spin-dependent electric field through spin motive force. Spin current generated by the spin-dependent electric field can in turn modify the magnetization dynamics through spin-transfer torque. While this feedback effect is usually weak and thus ignored, we predict that in Rashba spin-orbit coupling systems with large Rashba parameter αR\alpha_{\rm R}, the coupling generates the spin-dependent electric field [\pm(\alpha_{\rm R}m_e/e\hbar) (\vhat{z}\times \partial \vec{m}/\partial t)], which can be large enough to modify the magnetization dynamics significantly. This effect should be relevant for device applications based on ultrathin magnetic layers with strong Rashba spin-orbit coupling.Comment: 4+ pages, 2 figure
    corecore